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Principal Component Analysis

PCA identifies an m dimensional explanation of n
dimensional data where m < n... . -

Originated as a statistical analysis technique.
PCA attempts to minimi reconstruction
error under the followi

estrictions
— Linear Reconstructic
- Orthogonal Factor:

Equivalently;-PCi
proof coming.

\ attempts to maximize variance,




PCA Applications

e Dimensionality Reduction (reduce a
problem from n to m dlmensaeﬂs with m
<< n)

e Handwriting Recognition - PCA
determined 6- 8 i ant” components

from a set of ures.




PCA Example
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PCA Example

1.5

0.5-

-0.5

-0.5 0 0.5 1

1.5




Minimum Reconstruction Error )
Maximum Variance

Proof from Diamantaras and Kung

Take a random vector x=[Xy, X5, ..;=X;]F with
E{x} = 0, i.e. zero mean.

Make the covariance matri

E{xxT}

Reconstruct the data through WT.
=wWly=wlwx

Minimize the error.

E{||lz — #[|*}




Minimum Reconstruction Error )
Maximum Variance

Je = E{||lz — 2(|°}
= E{tr[(z — 2)(z — )"} o
= E{trlza’ — 227 — 22T + 23152

— tr(Ry) — tr(RaWTW) TWR,) — tr(WT Ry W)
= tr(Ry) — tr(W R, WL

tr(WR, WT) is the v

E{Gi— E{y})?} = Eftr(yyT))
= tr(WR W)




PCA: Linear Algebra

e Theorem: Minimum Reconstruction,
Maximum Variance achleved -using

igen? ector of R, with

e Note that g orthogonal




PCA with Linear Algebra

Given m signals of length n, construct the
data matrix

Then subtract the mean from each signal
and compute the covariance matrix

C = XXT.




PCA with Linear Algebra

Use the singular-value decomposition to find
the eigenvalues and eigenvectors of C.

USVT 3
Since C is symmetric, 4=V, and

U=1[§

where each eigenvector is a prlnC|paI

component of the data.




PCA with Neural Networks

e Most PCA Neural Networks use some form
of Hebbian learning.

“Adjust the strength o
between units A and.Bqin proportion to the
product of their L '

* Applied dirg this equation is unstable.
[Iw, |12 11 as k! 1

e Important Note: neural PCA algorithms
are unsupervised.




PCA with Neural Networks

e Simplest fix: normalization.




PCA with Neural Networks

e Another fix: Oja’s rule.
e Proposed in 1982 by Oja and:Karhunen.

Wy = Wk + Br(Yi Xk = Y2 W)
e This is.a linearized version of the
normalized Hebbian rule.

e Convergence, as k! 1, w, !ej.




PCA with Neural Networks

e Subspace Model

o APEX
e Multi-layer auto-associativ




PCA with Neural Networks

e Subspace Model: a multi- component
extension of Oja’s rule.

AW, = Bk(Yka YiYi' Wi)
Eventually W spans the same subspace as the top
m principal eigenvectors. This method does not
extract the exact eigenvectors.




PCA with Neural Networks

e APEX Model: Kung and Diamantaras

o

(I+C)1Wx V4 (I-C)Wx
0




PCA with Neural Networks

e APEX Learning

- Exact princip
- Local updates, Aw,, only depends on X,, X, W,

- "-Cy™acts as an orthogonalization term




PCA with Neural Networks

e Multi-layer networks: bottlenecks

- e=X-Y

e W, spans the subspace of the first m principal
eigenvectors.
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Independent Component Analysis

e Also known as Blind Source Separation.
e Proposed for neuromimetic

independent in.t tistical sense.
Two variables x,.y are statistically

independent iff P(x A y) = P(x)P(y).
Equivalently,

E{g(x)h(y)} - E{g(x)}E{h(y)} =0

where g and h are any functions.




Statistical Independence

e In other words, if we know something
othing about




Statistical Independence

e In other words, if we know something
othing about

Dependent

Independent



Independent Component Analysis

Given m signals of length n, construct the
data matrix

We assume thé (.consists of m sources

such that

X = AS

where A is an unknown m by m mixing
matrix and S is m independent sources.




Independent Component Analysis

ICA seeks to determine a matrix W such
that > ot

where W is an m by
set of independ

WYAAL)Y = ATAX = X

e Note that the components need not be
orthogonal, but that the reconstruction is

still linear.




ICA Example
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ICA Example
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PCA on this data?
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Classic ICA Problem

e The “"Cocktail” party. How to isolate a

single conversation amidst t%% noisy
environment. *

¢ 4«

Mic 1 Mic 2

ource 1 Source 2

http://www.cnl.salk.edu/~tewon/Blind/blind_audio.html



More ICA Examples

ot e onee




More ICA Examples




Notes on ICA

e ICA cannot “perfectly”
original signals.
If X = AS then ;
1) if AS = (A'M-1)(MS’)-then. we lose scale
2) if AS = (A'P-1)(P O then we lose order
Thus, we can reconstruct only without scale

reconstruct the

and order. "=

e Examples done with FastICA, a non-
neural, fixed-point based algorithm.



Neural ICA

o ICA is typically posed as an optlmlzatlon
problem. 2iat.

e Many iterative solution
problems can be casti
network.

ptimization
a neural




Feed-Forward Neural ICA

General Network Structure

x\l

Yeie

Learn B such:that'y = Bx has independent

components.

Learn Q which minimizes the mean squared
error reconstruction.




Neural ICA

e Herault-Jutten: local updates
B = (I+S) 1

Bis1. 3 B+ BB + 2,,7]
z(i) = a/au(i) au(i)/ay(i)
u = f(Bx); f = tansig, etc.




Recurrent Neural ICA

e Amari: Fully recurrent neural network with
self- |nh|b|tory connections. -

Yy =w(t) — Wyt —7),

Z_Vf = —u(II + WIIA = F)gT W]
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