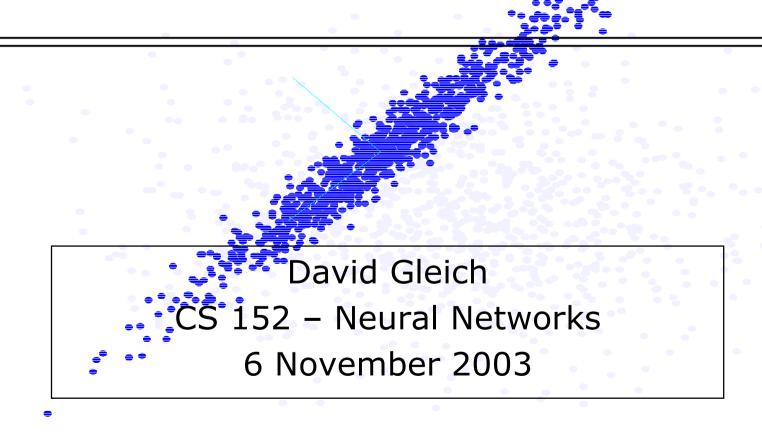
Principal Component Analysis and Independent Component Analysis in Neural Networks



TLAs

- TLA Three Letter Acronym
- PCA Principal Component Analysis
- ICA Independent Component Analysis
- SVD Singular-Value Decomposition

Outline

- Principal Component Analysis
 - Introduction
 - Linear Algebra Approach
 - Neural Network Implementation
- Independent Component Analysis
 - Introduction
 - Demos
 - Neural Network Implementations
- References
- Questions

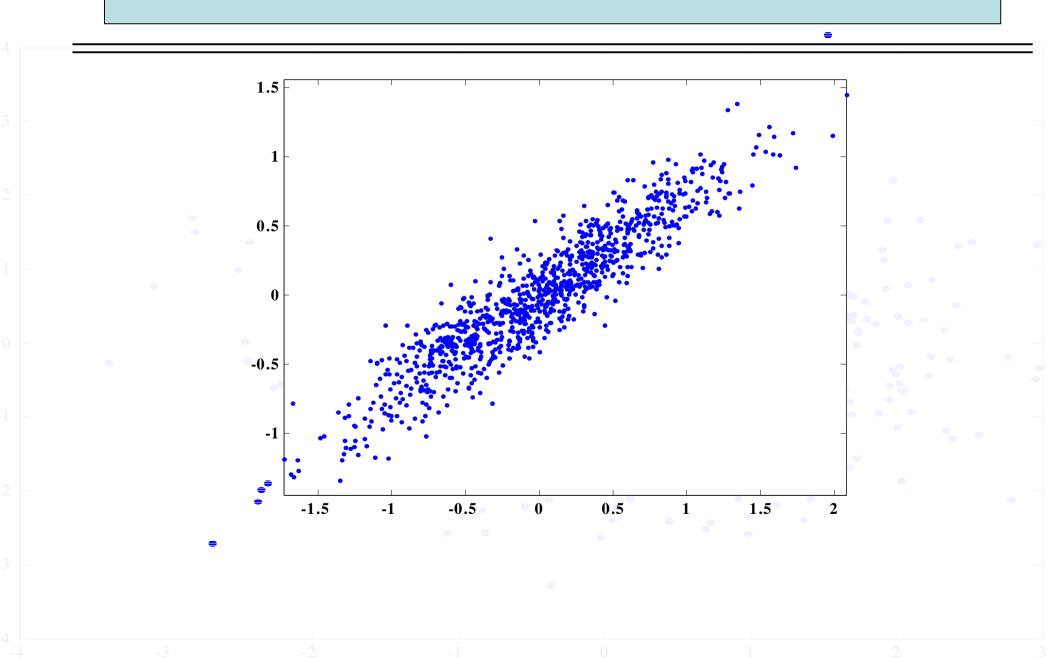
Principal Component Analysis

- PCA identifies an m dimensional explanation of n dimensional data where m < n....
- Originated as a statistical analysis technique.
- PCA attempts to minimize the reconstruction error under the following restrictions
 - Linear Reconstruction
 - Orthogonal Factors
- Equivalently, PCA attempts to maximize variance, proof coming.

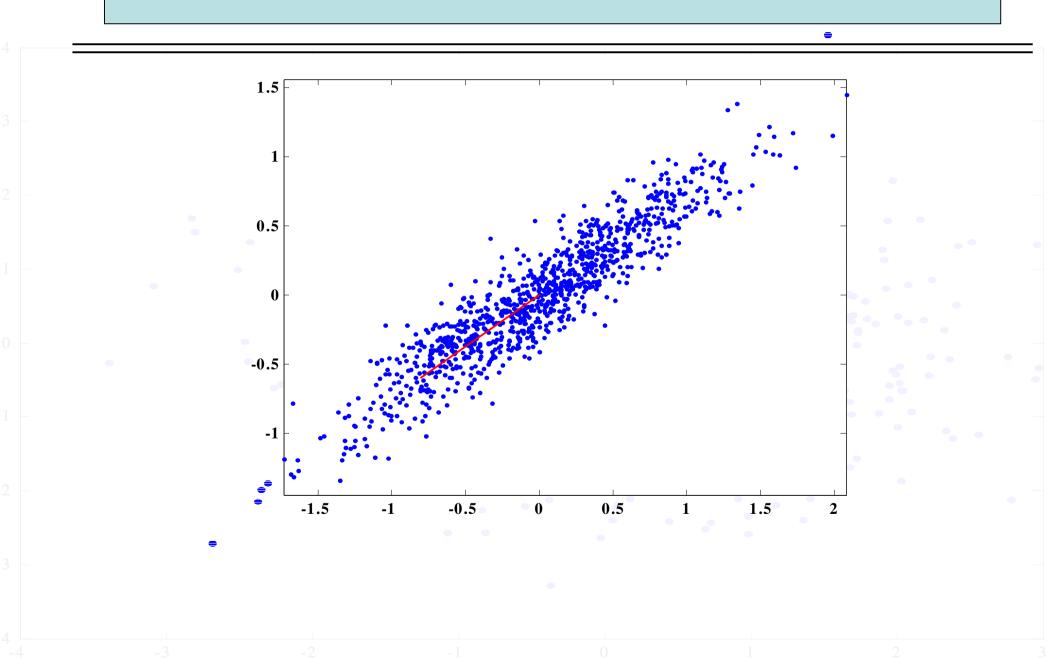
PCA Applications

- Dimensionality Reduction (reduce a problem from n to m dimensions with m << n)
- Handwriting Recognition PCA determined 6-8 "important" components from a set of 18 features.

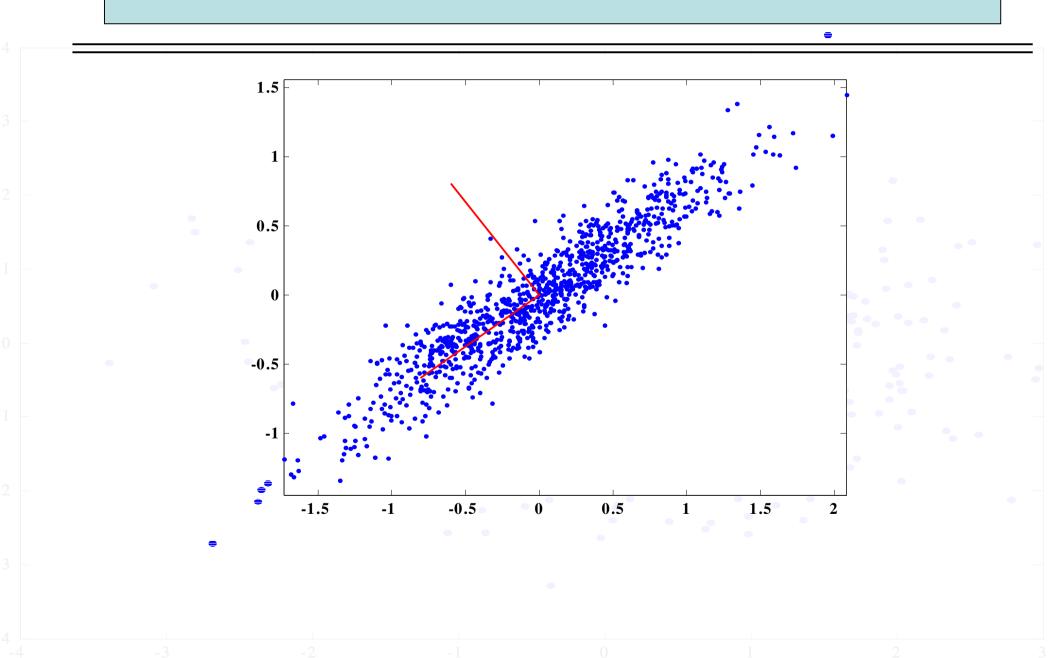
PCA Example



PCA Example



PCA Example



Minimum Reconstruction Error) Maximum Variance

Proof from Diamantaras and Kung

Take a random vector $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]^T$ with $\mathbf{E}\{\mathbf{x}\} = 0$, i.e. zero mean.

Make the covariance matrix $\mathbb{R} = \mathbb{E}\{xx^T\}$.

Let y = Wx be a orthogonal linear transformation of the data.

$$\mathbf{W}\mathbf{W}^{\mathsf{T}} = \mathbf{I}$$

Reconstruct the data through WT.

$$\hat{x} = W^T y = W^T W x$$

Minimize the error.

$$E\{||x-\widehat{x}||^2\}$$

Minimum Reconstruction Error) Maximum Variance

$$J_{e} = E\{||x - \hat{x}||^{2}\}$$

$$= E\{\operatorname{tr}[(x - \hat{x})(x - \hat{x})^{T}]\}$$

$$= E\{\operatorname{tr}[xx^{T} - x\hat{x}^{T} - \hat{x}x^{T} + \hat{x}\hat{x}^{T}]\}$$

$$= \operatorname{tr}(R_{x}) - \operatorname{tr}(R_{x}W^{T}W) + \operatorname{tr}(W^{T}WR_{x}) - \operatorname{tr}(W^{T}R_{x}W)$$

$$= \operatorname{tr}(R_{x}) - \operatorname{tr}(WR_{x}W^{T})$$

$$\operatorname{tr}(WR_{x}W^{T}) \text{ is the variance of y}$$

$$E\{(y - E\{y\})^{2}\} = E\{\operatorname{tr}(yy^{T})\}$$

$$= \operatorname{tr}(WR_{x}W^{T})$$

PCA: Linear Algebra

Theorem: Minimum Reconstruction,
 Maximum Variance achieved using

 $W = [\S e_1, \S e_2, \dots, \S e_m]^T$ where e_i is the i^{th} eigenvector of R_x with eigenvalue λ_i and the eigenvalues are sorted descendingly.

Note that Wis orthogonal.

PCA with Linear Algebra

Given m signals of length n, construct the data matrix

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_m \end{pmatrix}$$
.

Then subtract the mean from each signal and compute the covariance matrix

$$C = XX^{T}$$
.

PCA with Linear Algebra

Use the singular-value decomposition to find the eigenvalues and eigenvectors of C.

$$USV^T = C$$

Since C is symmetric, U. V., and

$$U = [\Se_{i}, \Se_{2}, ..., \Se_{m}]^{T}$$

where each eigenvector is a principal component of the data.

 Most PCA Neural Networks use some form of Hebbian learning.

"Adjust the strength of the connection between units A and B in proportion to the product of their simultaneous activations."

$$W_{k+1} = W_k + \beta_k(y_k X_k)$$

- Applied directly, this equation is unstable. $\|\mathbf{w}_k\|^2 \cdot 1$ as $k \cdot 1$
- Important Note: neural PCA algorithms are unsupervised.

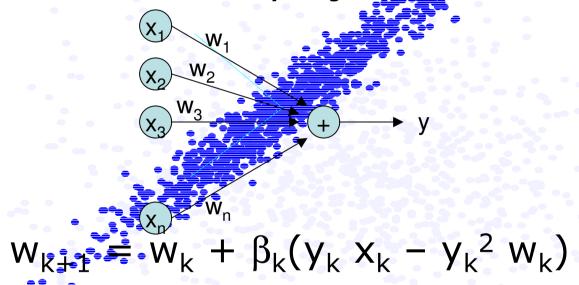
Simplest fix: normalization.

$$w'_{k+1} = w_k + \beta_k(y_k x_k)$$

 $w_{k+1} = w'_{k+1}/||w'_{k+1}||^2$

 This update is equivalent to a power method to compute the dominant eigenvector and as k! 1, w_k! e₁.

- Another fix: Oja's rule.
- Proposed in 1982 by Oja and Karhunen.



- This is a linearized version of the normalized Hebbian rule.
- Convergence, as k!1, w_k! e₁.

APEX

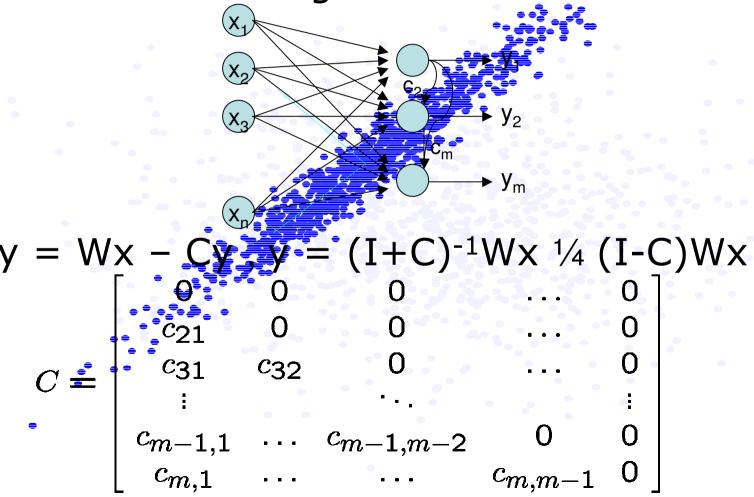
Multi-layer auto-associative

• Subspace Model: a multi-component extension of Oja's rule.

$$\Delta W_{k} = \beta_{k}(y_{k}x_{k}^{T} - y_{k}y_{k}^{T}W_{k})$$

Eventually W spans the same subspace as the top m principal eigenvectors. This method does not extract the exact eigenvectors.

APEX Model: Kung and Diamantaras



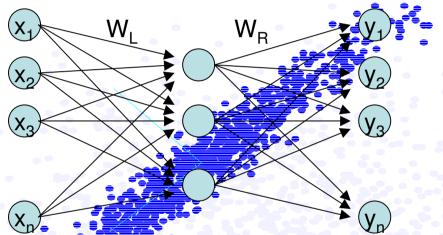
APEX Learning

$$\Delta w_{i,j,k} = \beta_k (y_{ik} x_{jk} - y_{ik}^2 w_{i,j,k})$$

$$\Delta c_{i,j,k} = \beta_k (y_{ik} y_{jk} - y_{ik}^2 c_{i,j,k})$$

- Properties of APEX model:
 - Exact principal components
 - Local updates, Δw_{ab} only depends on x_a , x_{b_a}
 - "-Cy" acts as an orthogonalization term

Multi-layer networks: bottlenecks



Train using auto-associative output.

$$e = x - y$$

 W_L spans the subspace of the first m principal eigenvectors.

Outline

- Principal Component Analysis
 - Introduction
 - Linear Algebra Approach
 - Neural Network Implementation
- Independent Component Analysis
 - Introduction
 - Demos
 - Neural Network Implementations
- References
- Questions

Independent Component Analysis

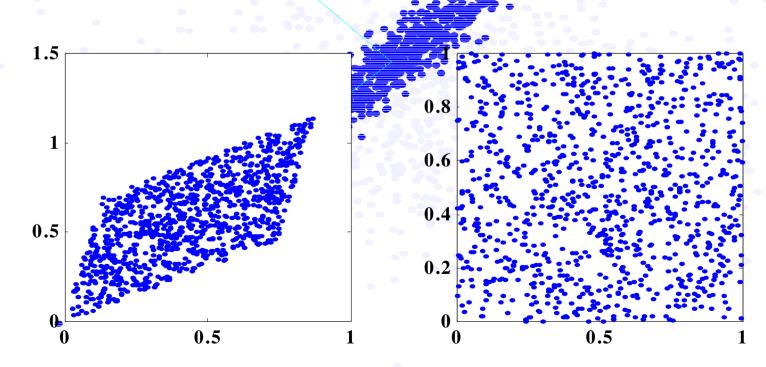
- Also known as Blind Source Separation.
- Proposed for neuromimetic hardware in 1983 by Herault and Jutten.
- ICA seeks components that are independent in the statistical sense.

Two variables x_i y are statistically independent if $P(x \land y) = P(x)P(y)$.

Equivalently, $E\{g(x)h(y)\} - E\{g(x)\}E\{h(y)\} = 0$ where g and h are any functions.

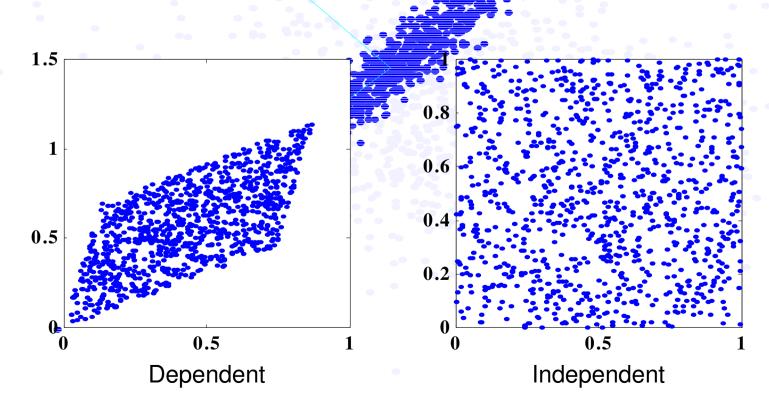
Statistical Independence

 In other words, if we know something about x, that should tell us nothing about y.



Statistical Independence

 In other words, if we know something about x, that should tell us nothing about y.



Independent Component Analysis

Given m signals of length n, construct the data matrix

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_m \end{pmatrix}$$
.

We assume that X consists of m sources such that

$$X = AS$$

where A is an unknown m by m mixing matrix and S is m independent sources.

Independent Component Analysis

ICA seeks to determine a matrix W such that

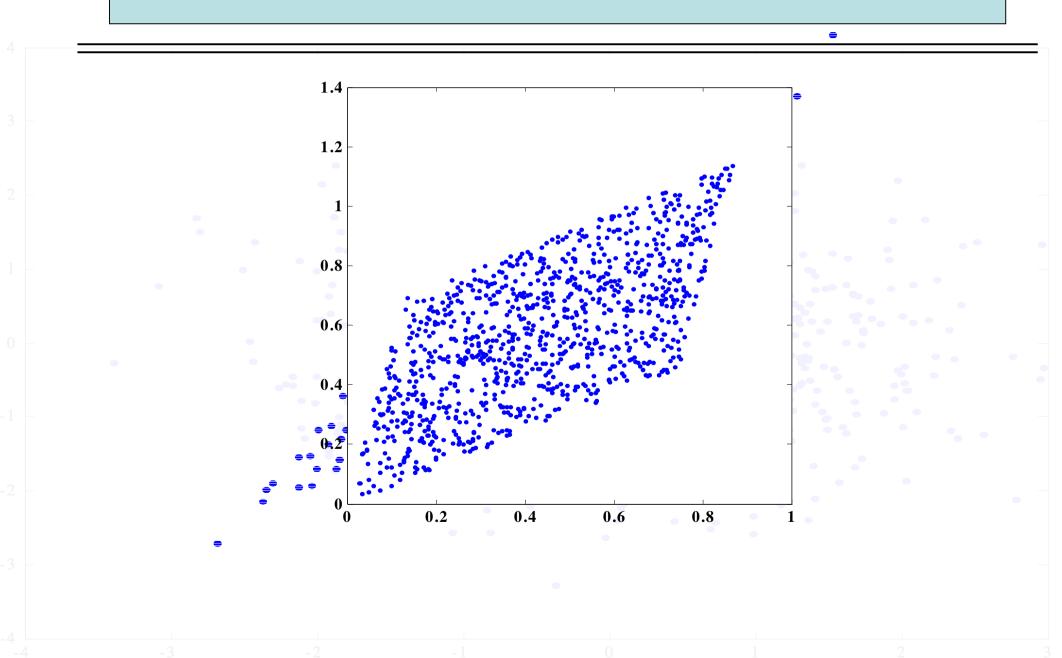
$$Y = WX$$

where W is an m by m matrix and Y is the set of independent source signals, i.e. the independent components.

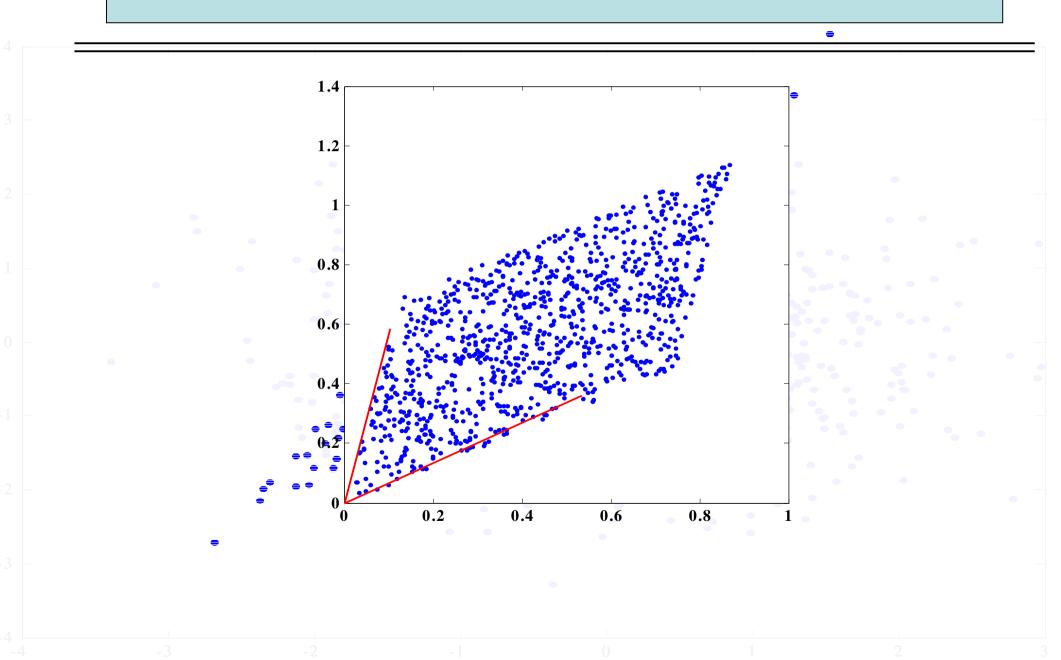
$$W \mathcal{A}^{-1} Y = A^{-1}AX = X$$

 Note that the components need not be orthogonal, but that the reconstruction is still linear.

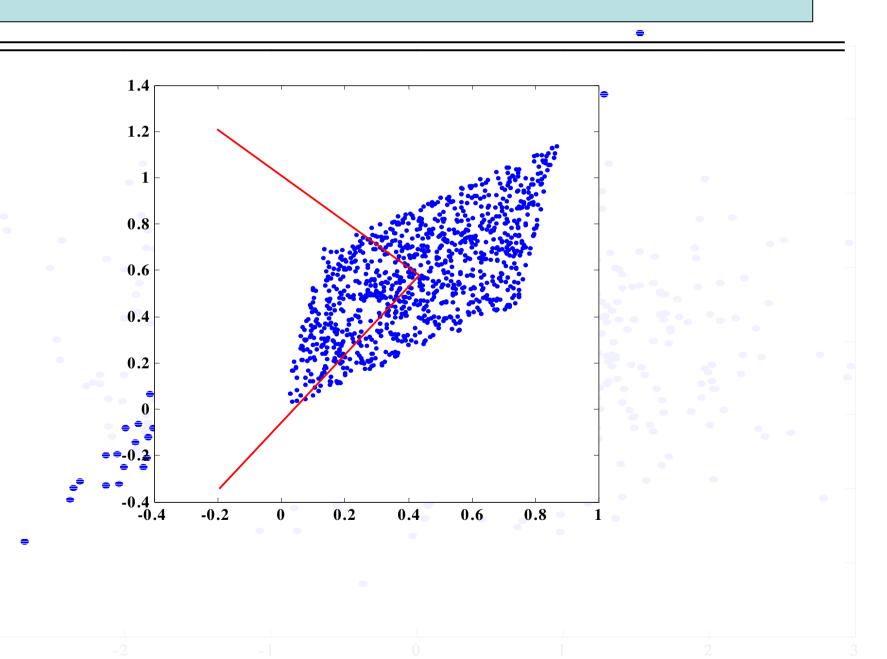
ICA Example



ICA Example

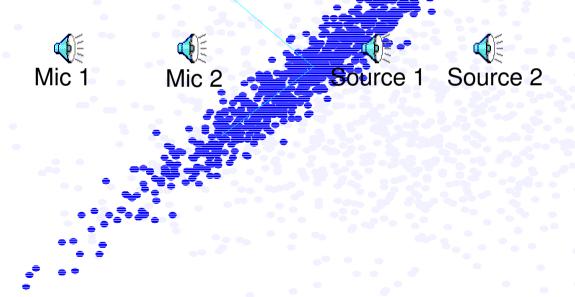


PCA on this data?



Classic ICA Problem

 The "Cocktail" party. How to isolate a single conversation amidst the noisy environment.



http://www.cnl.salk.edu/~tewon/Blind/blind_audio.html

More ICA Examples

-2 -1 0 1 2

More ICA Examples

Notes on ICA

• ICA cannot "perfectly" reconstruct the original signals.

If X = AS then

- 1) if $AS = (A'M^{-1})(MS')$ then we lose scale
- 2) if $AS = (A'P^{-1})(PS')$ then we lose order

Thus, we can reconstruct only without scale and order.

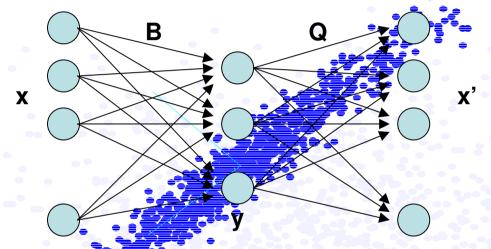
• Examples done with FastICA, a nonneural, fixed-point based algorithm.

Neural ICA

- ICA is typically posed as an optimization problem.
- Many iterative solutions to optimization problems can be cast into a neural network.

Feed-Forward Neural ICA

General Network Structure



- 1. Learn B such that y = Bx has independent components.
- 2. Learn Q which minimizes the mean squared error reconstruction.

Neural ICA

Herault-Jutten: local updates

$$B = (I+S)^{-1}$$

$$S_{k+1} = S_k + \beta_k g(y_k) h(y_k^T)$$

$$g = t, h = t^3; g = hardlim, h = tansig$$

Bell and Sejnowski information theory

$$B_{k+1} + \beta_k [B_k^{-T} + z_k x_k^T]$$

$$z(i) = \partial/\partial u(i) \partial u(i)/\partial y(i)$$

$$u = f(Bx); f = tansig, etc.$$

Recurrent Neural ICA

 Amari: Fully recurrent neural network with self-inhibitory connections.

$$\tau_i \frac{dy_i}{dt} + y_i = x_i(t) - \widehat{w}_{ij}(t)y_j,$$

$$y(t) = \widehat{W}(t))^{-1}x(t),$$

$$y(t) = x(t) - \widehat{W}(t)y(t - \tau),$$

$$\frac{d\widehat{W}}{dt} = -\mu(t)[I + \widehat{W}][\Lambda - f(y(t))g^T(y(t))].$$

References

- Diamantras, K.I. and S. Y. Kung. *Principal Component Neural Networks*.
- Comon, P. "Independent Component Analysis, a new concept?" In Signal Processing, vol. 36, pp. 287-314, 1994.
- FastICA, http://www.cis.hut.fi/project.org/
- Oursland, A., J. D. Paula, and N. Mahmood. "Case Studies in Independent Component Analysis."
- Weingessel, A. "An Analysis of Learning Algorithms in PCA and SVD Neural Networks."
- Karhunen, J. "Neural Approaches to Independent Component Analysis."
- Amari, S., A.-Cichocki, and H. H. Yang. "Recurrent Neural Networks for Blind Separation of Sources."

Questions?

